Proteasome function is required for DNA damage response and fanconi anemia pathway activation.

نویسندگان

  • Céline Jacquemont
  • Toshiyasu Taniguchi
چکیده

Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin) through unknown mechanisms. The Fanconi anemia pathway is a DNA damage-activated signaling pathway, which regulates cellular resistance to DNA cross-linking agents. Monoubiquitination and nuclear foci formation of FANCD2 are critical steps of the Fanconi anemia pathway. Here, we show that proteasome function is required for the activation of the Fanconi anemia pathway and for DNA damage signaling. Proteasome inhibitors (bortezomib and MG132) and depletion of 19S and 20S proteasome subunits (PSMD4, PSMD14, and PSMB3) inhibited monoubiquitination and/or nuclear foci formation of FANCD2, whereas depletion of DSS1/SHFM1, a subunit of the 19S proteasome that also directly binds to BRCA2, did not inhibit FANCD2 monoubiquitination or foci formation. On the other hand, DNA damage-signaling processes, such as IR-induced foci formation of phosphorylated ATM (phospho-ATM), 53BP1, NBS1, BRCA1, FANCD2, and RAD51, were delayed in the presence of proteasome inhibitors, whereas ATM autophosphorylation and nuclear foci formation of gammaH2AX, MDC1, and RPA were not inhibited. Furthermore, persistence of DNA damage and abrogation of the IR-induced G(1)-S checkpoint resulted from proteasome inhibition. In summary, we showed that the proteasome function is required for monoubiquitination of FANCD2, foci formation of 53BP1, phospho-ATM, NBS1, BRCA1, FANCD2, and RAD51. The dependence of specific DNA damage-signaling steps on the proteasome may explain the sensitization of tumor cells to DNA-damaging chemotherapeutic agents by proteasome inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aurora A kinase is required for activation of the Fanconi anemia/BRCA pathway upon DNA damage

Previous studies have linked the DNA damage response to mitotic progression machinery. Mitotic kinases, such as Aurora A kinase and Polo-like kinase, are involved in the phosphorylation of cell cycle regulators in response to DNA damage. Here, we investigated the potential involvement of Aurora A kinase in the activation of the Fanconi anemia (FA)/BRCA pathway, which participates in cellular re...

متن کامل

Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia.

Fanconi anemia (FA) is a cancer-prone hereditary disease resulting from mutations in one of the 13 genes defining the FANC/BRCA pathway. This pathway is involved in the cellular resistance to DNA-cross-linking agents. How the FANC/BRCA pathway is activated and why its deficiency leads to the accumulation of FA cells with a 4N DNA content are still poorly answered questions. We investigated the ...

متن کامل

FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation

Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is k...

متن کامل

Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma.

The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to replicative stress induced by DNA alkylating agents and greatly influences drug response in cancer treatment. We recently reported that FA/BRCA genes are overexpressed and causative for drug resistance in human melphalan-resistant multiple myeloma cell lines. However, the transcriptional...

متن کامل

Experimental Therapeutics, Molecular Targets, and Chemical Biology Targeting the Fanconi Anemia/BRCA Pathway Circumvents Drug Resistance in Multiple Myeloma

The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to replicative stress induced by DNA alkylating agents and greatly influences drug response in cancer treatment. We recently reported that FA/BRCA genes are overexpressed and causative for drug resistance in human melphalan-resistant multiple myeloma cell lines. However, the transcriptional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 15  شماره 

صفحات  -

تاریخ انتشار 2007